New PRB “Inter-orbital singlet pairing in Sr2RuO4: a Hund’s superconductor”

Symbolic picture for the article. The link opens the image in a large view.
Stefan Käser, et al.

We study the superconducting gap function of Sr2RuO4. By solving the linearized Eliashberg equation with a correlated pairing vertex extracted from a dynamical mean-field calculation we identify the dominant pairing channels. An analysis of the candidate gap functions in orbital and quasiparticle band basis reveals that an inter-orbital singlet pairing of even parity is in agreement with experimental observations. It reconciles in particular the occurrence of a two-component order parameter with the presence of line-nodes of quasiparticles along the c-axis in the superconducting phase. The strong angular dependence of the gap along the Fermi surface is in stark contrast to its quasi-locality when expressed in the orbital basis. We identify local inter-orbital spin correlations as the driving force for the pairing and thus reveal the continuation of Hund’s physics into the superconducting phase.

Link to Phys. Rev. B